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A multivariate generalization of mutual information, multi-information, is
defined in the thermodynamic limit. The definition takes phase coexistence into
account by taking the infimum over the translation-invariant Gibbs measures of
an interaction potential. It is shown that this infimum is attained in a pure state.
An explicit formula can be found for the Ising square lattice, where the quantity
is proved to be maximized at the phase-transition point. By this, phase coexis-
tence is linked to high model complexity in a rigorous way.
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1. INTRODUCTION

1.1. Why Multi-Information?

Shannon’s mutual information compares the summed entropies H of two
distributions p{1}, p{2} with the entropy of their joint distribution p{1, 2}:

I(p{1, 2})=H(p{1})+H(p{2}) − H(p{1, 2}). (1)

There are several generalizations for finite sets L with more than two sub-
systems. Keeping the two-point property of I, one can let the quantity
depend on a distance between the elements of L. (29) There are also multi-
variate generalizations. Co-information is an alternating sum of entropies



of the marginals pV of a distribution pL for all subsystems V … L. (8)

A simple multivariate generalization that is valid in any dimension is called
multi-information: (41)

I(pL)= C
i ¥ L

H(p{i}) − H(pL) (2)

Below we will give a motivation for this quantity coming from information
geometry. Also, in Section 4 we show the relationship to excess entropy.
Let us already mention that in the limit of infinite shift-invariant systems,
multi-information will again be mutual information, namely between an
elementary subsystem and the infinite system.

Information-theoretic measures as the ones cited above quantify
stochastic interdependence in probability distributions. They are used in a
variety of fields, e.g., communication theory, (39) multivariate statistics, (26)

neural networks, (8) complexity measures, (16, 42) learning rules, (5, 31) to mention
only a few of them.

The behaviour of a quantity like mutual information is best shown
by a simple example: two units x1, x2 which can take values from {0, 1}.
Knowing the probabilities p{1, 2}(x1, x2) of the four configurations, mutual
information is given by (1). Let us introduce an additional parameter b by
which we can tune p{1, 2}. We define

pb(x1, x2) :=
(p{1, 2}(x1, x2)) b

;xŒ1, xŒ2 ¥ {0, 1} (p{1, 2}(x −

1, x −

2)) b
. (3)

The denominator normalizes pb. For b=0, pb is the equidistribution,
whereas b Q . gives us the Dirac measure. For a generic choice of p{1, 2},
the function b W I(pb), let us call it I(b), is shown in Fig. 1. The trajectory
of the curve b W pb within the simplex of all probability measures for the
four configurations is shown in Fig. 2. It ranges from the barycentre to one
of the corners of the simplex. The Kullback–Leibler distance (see below)
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Fig. 1. Plot of I(b) for fixed values of p{1, 2}(x1, x2). I(b) vanishes for b=0 and b Q ., i.e.,
there are no stochastic dependencies for complete randomness or complete predictability.
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Fig. 2. The set of probability distributions for the four configurations (x1, x2) with the
plane of factorizable distributions and the curve pb.

of this curve from the surface of independent distributions is mutual
information.

Multi-information generalizes exactly this property: It still is the
Kullback–Leibler distance of pL from its factorized distribution
êi ¥ L p{i}. (1, 4) Interest in this quantity is motivated by finite-volume
information geometry, see ref. 1 and the references therein. Entropy and
multi-information have natural decompositions of a form that we will
briefly describe now. Let us use a simple example for pL:

pL(xL)=eF+;
” ] V … L GV <i ¥ V xi, (4)

with xL the collection of x i, i ¥ L, where the x i are from {0, 1}. F is a
normalization constant (the free energy). The coefficients GV ¥ R, V … L

represent the strength of direct interaction between the units i. Let us now
denote by p (k)

L a distribution that has the same marginals as pL up to kth
order, but no intrinsic interactions of higher order (GV=0 for all V such
that |V| > k). It is the maximum-entropy estimate (28) of pL given its kth
order marginals. Now there is an ‘‘extended Pythagoras theorem’’

D(pL || p (0)
L ) :=C

xL

pL(xL) ln
pL(xL)
p (0)

L (xL)
= C

|L|

k=1
D(p (k)

L || p (k − 1)
L ), (5)

where D denotes the Kullback–Leibler distance.(14) In our example, the left-
hand side (LHS) is |L| ln 2 − H(pL), the ‘‘distance’’ from the equidistribution,
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whereas multi-information is given by D(pL || p (1)
L ). It can be decomposed

into a sum like the right-hand side (RHS) without the k=1 term. Note
that D, although not a metric, is the canonical (2) measure of distance in
information geometry and that the above decomposition is non-trivial for
|L| > 2. Note also that, e.g., covariance makes only use of correlations up
to second order, whereas multi-information contains also information from
all the higher-order marginals.

1.2. Statistical Mechanics

Looking at Figs. 1 and 2, the question about the maximum of I
springs to mind. To give us an idea what such a maximization (4, 6) can
mean, we want to define multi-information in the context of statistical
mechanics. There we have a mathematical formalism that describes models
of different structural richness. A simple example for a finite-volume state
(Gibbs measure) is given by (4). The set of all its terms GV <i ¥ V x i in the
exponent is called an interaction potential. A parametrized family of such
potentials is called a model. The parameters (cf. the b in (3)) can be inverse
temperature, magnetic field etc.

There are (infinite-volume) potentials whose infinite-volume state is
not uniquely determined. Models showing this phenomenon for certain
parameter values are said to exhibit phase coexistence. According to
clear hints in the literature, measures of stochastic interdependence are
maximized at critical parameter values, (3, 17, 34) or at phase transitions in a
less strict sense. (15, 24, 33) One can go a step further and look at the structural
phenomena occurring at the phase coexistence point in standard models
like the Ising square lattice: infinite-cluster formation, divergence of the
correlation length. They can be seen as signs of ‘‘complex’’ behaviour.
From this perspective it seems natural to assume that large stochastic
interdependence is associated with high structural complexity. In ref. 20
this is discussed in connection with excess entropy, a quantity that, as we
will show, is closely related to multi-information.

Phase transitions thus seem to mark the ‘‘border of maximum complex
behaviour’’ between complete randomness and absolute predictability. It is
one of the objectives of the present work to give an example where this
kind of statement can be made rigorous. To do so, we generalize multi-
information to a quantity in the thermodynamic limit that takes into
account the non-uniqueness of infinite-volume Gibbs measures for certain
interaction potentials. Using the example of the Ising square lattice, we can
connect phase coexistence with maximum distance from factorizability in a
formal way.
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2. MULTI-INFORMATION IN STATISTICAL MECHANICS

2.1. Notation

Our systems take discrete values on the points of an infinite lattice. Let
S be a finite set (the spin space), and let x: Zd

Q S, i W x i be configurations
on the d-dimensional lattice of integers Z. To make it a measurable space,
the space of configurations W :=S(Zd) is equipped with the product sigma
algebra F, which contains the cylinder sets {x ¥ W : XL(x)=xL}, where
xL :=(xi)i ¥ L is a configuration on the finite5 set L …… Zd and XL: W Q SL,

5 We denote finiteness of subsets by …… .

x W xL the natural projection onto a finite configuration. Thus the projec-
tion XL yields finite measurable spaces (WL, FL), where WL :=SL denotes
the set of xL and FL its power set.

We will first define multi-information on these finite spaces, for pL a
probability measure on (WL, FL). At this point, the form of the measure is
of no importance.

Definition 2.1. Let pL be a probability measure on (WL, FL), where
L is a finite set. The multi-information of pL is defined by

I(pL) := C
i ¥ L

H(p{i}) − H(pL). (6)

Here, H(pL) :=− ;xL ¥ WL
pL(xL) ln pL(xL) denotes the Shannon entropy

and p{i}(x i) :=;xL0{i}
p(xL0{i}, x i) are the marginal distributions of the

elementary subsystems in L.

2.2. Thermodynamic Limit

To define multi-information for distributions on the infinite measur-
able space (W, F), our starting point are measures pL on finite spaces
(WL, FL), L …… Zd. These we consider as being obtained from a translation
invariant measure p on (W, F) by defining its marginal distributions
pL(xL) :=p(XL=xL). Translation invariance of p is defined by

p({(xi+j)j ¥ Zd | (xj)j ¥ Zd ¥ A})=p(A) -A ¥ F, -i ¥ Zd. (7)

Existence and properties of the van Hove limit (38) of multi-information
follow in straightforward fashion from well-known results for entropy (see
the appendix for a proof ). Notice that the set of translation invariant
measures is a simplex and thus convex. (22, 40)

Multi-Information in the Thermodynamic Limit 953



Theorem and Definition 2.2. Let p be a translation invariant
probability measure on (W, F). Then the van Hove limit limL q Zd

1
|L| I(pL)

=: I(p) exists and I(p) ¥ [0, ln |S|]. The function p W I(p) is concave and
lower-semicontinuous (w.r.t. the weakg topology).

The quantity I(p) depends on the state of a system. In statistical
mechanics, however, models are defined via the interaction between their
constituents (spins, particles). In the following, we want to obtain a defini-
tion which directly depends on the interaction potential.

2.3. Phase Coexistence

The construction of measures in infinite volume (18, 32) can yield non-
uniqueness for a given interaction, so the description of phase coexistence
becomes possible. For an interaction-dependent definition of multi-infor-
mation we have to choose from a set of possible measures now. To intro-
duce the necessary notation and to make our point clear, we give a brief
description of the standard construction of infinite-volume Gibbs mea-
sures. All the results stated in this section can be found in this or a similar
form in refs. 22 and 40, for short descriptions of the subject see also refs. 25
and 37.

From finite-volume statistical mechanics one knows the form of the
conditional probabilities for a finite configuration given an exterior con-
figuration that the measure p on (W, F) should have. (25) Specifying these,
one obtains a condition that possible infinite-volume Gibbs measures
should fulfill. For this, we need to define interaction potentials in infinite
volume.

Definition 2.3. A potential F on Zd is a family of functions
{FV}V …… Zd from W to R with

(i) FV is XV-measurable for all V …… Zd.

(ii) The series EF
L (xL, yL

c) :=;V …… Zd : V 5 L ] ” FV(xL, yL
c) converges

for all L …… Zd and for all (xL, yL
c) :=x ¥ W (where Lc denotes the

complement of L in Zd).

EF
L (xL, yL

c) is the energy of xL with boundary condition yL
c.

This definition enables us to specify the Gibbsian conditional proba-
bilities for the desired measures. Since we know nothing about the existence
of these measures, we can only fix probability kernels (i.e., loosely speak-
ing, conditional probabilities ‘‘waiting for a measure’’). Let WL

c=SZd 0L.

954 Erb and Ay



Using a definition from ref. 22, a specification for finite S is given by a
family {kF

L }L …… Zd of probability kernels from (WL
c, FL

c) to (W, F) where

A W kF
L (A | yL

c) := C
xL: (xL, yLc) ¥ A

e− EF
L (xL, yLc)

;x −

L ¥ WL
e− EF

L (x −

L, yLc)
. (8)

Here, F is a potential, L …… Zd, A ¥ F, and yL
c ¥ WL

c. Such specifications
fulfill consistency conditions analogous to those of conditional probabil-
ities.

The set of DLR measures is now defined as the solution set of
p(A | FL

c)=kF
L (A | · ) p-a.s. for all finite volumes L and events A. Here,

p(A | FL
c) is the conditional expectation of 1A, i.e., of the indicator function

for an event A, given the sigma algebra of events outside L. For the defini-
tion of conditional expectations given a sub-sigma algebra, see, e.g., ref. 7.
The properties of the set of DLR measures are well known.

Proposition and Definition 2.4. Given a potential F, the set of
infinite-volume Gibbs states (DLR measures) is defined by

G(F) :={p on (W, F) : p(A | FL
c)=kF

L (A | · ) p-a.s. -A ¥ F, L …… Zd}.

G(F) is a compact, convex set (more precisely: a simplex). Depending on
the potential F, there are the following possibilities for its cardinality:

|G(F)|=0, (9)

|G(F)|=1, (10)

|G(F)|=.. (11)

The set of Gibbs measures is always non-empty if the potential is
translation invariant, i.e., if it fulfills

FV+i((xj − i)j ¥ Zd)=FV(x) -x ¥ W, -V …… Zd, -i ¥ Zd. (12)

Notice that even translation-invariant potentials need not have only trans-
lation-invariant states. Since the thermodynamic limit of multi-information
was obtained for translation-invariant states, we will actually need the set
of translation-invariant Gibbs measures GI(F), i.e., the intersection of all
translation-invariant measures on (W, F) with the set of Gibbs measures of
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translation invariant potentials. The set GI(F) is also compact and convex
and its cardinality can be 1 or infinity.

2.4. Multi-Information of a Potential

We are now in the position to define multi-information as a function
of the interaction potential of a statistical-mechanics model. To extract the
minimum stochastic dependence, we define

Definition 2.5. Multi-information given a translation invariant
potential F is defined by

I(F) := inf
p ¥ GI(F)

I(p), (13)

where I(p) is given by Proposition and Definition 2.2.

Remark 2.6. Because of lower-semicontinuity of I(p) ( Theorem 2.2)
and compactness of GI it follows that the infimum is indeed attained. This
follows from general statements about extrema of semicontinuous func-
tions over compact sets, cf. Theorem 25.9 in ref. 13.

The non-uniqueness expressed by (11) is called phase coexistence.
Phases are the extreme points of the simplex G(F), which are also just the
physically realized states.6 These so-called pure states have fluctuation-free

6 Also, the property of ergodicity is equivalent with being an extreme point of the simplex of
translation-invariant probability measures.

macroscopic quantities. On the other hand, we can construct convex com-
binations of them, which do not stand for physically realized states but
which express our uncertainty about the state we are in, see ref. 22. That is
why the following proposition helps motivating our choice of defining I(F).

Theorem 2.7. Let ex(GI) be the set of extreme points of GI. We
have

I(F)= inf
p ¥ GI(F)

I(p)= inf
p ¥ ex(GI)(F)

I(p). (14)

Thus the infimum is attained in a physically relevant state. To illus-
trate Definition 2.5 and Proposition 2.7, Fig. 3 shows I(p) over the set of
infinite-volume Gibbs measures in the case of the two-dimensional Ising
model.
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Fig. 3. Schematic view of multi-information depending on p in the 2d Ising model.

3. ISING SQUARE LATTICE

3.1. Multi-Information for the Model

Taking advantage of the wealth of exact results for the two-dimen-
sional Ising model, we can find an explicit expression for multi-informa-
tion. Definition 2.5 is applied to the Ising potential

F b
V(x)=−bx ixj if V={i, j} … Z2 where |i − j|=1, (15)

and F b
V(x)=0 for all other sets V, the spin space S={ ± 1} ¦ x i and

b ¥ R+. The parameter b is the inverse temperature and stands for the
strength of interaction between spins. We use existing results for free
energy and magnetization, critical temperature and the known set of Gibbs
measures, for a list of references see ref. 22.

Let us first present a visualization of the main result of this paper:
A plot of multi-information of the potential (15) as a function of inverse
temperature (see Fig. 4). What one can see is a sharp isolated global
maximum at the point of phase transition. The analytic result will be given
in 3.2.

Fig. 4. Multi-information of the Ising square lattice.
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It is well known that below a critical temperature the set of infinite-
volume Gibbs measures is the convex hull of two extreme probability
measures:

G(F b)={tp b
− +(1 − t) p b

+ : t ¥ [0, 1]} (16)

where the two extreme points p b
± are connected by a spin-flip symmetry

that can be written as

p b
+(XL=xL)=p b

− (XL=−xL) -L …… Zd. (17)

Moreover, for the single-spin expectations (the magnetization) we have
p b

− (X0)=−p b
+(X0). It is essential that these order parameters are non-zero

for b > bc. The Yang formula (a rigorous result, see ref. 40, p. 153) is

mb :=p b
+(X0)=˛ (1 − sinh− 4 2b)

1
8 if b > bc,

0 otherwise.
(18)

The essential feature of the model is a continuous phase transition at a
critical temperature bc:

sinh 2bc=1, i.e. bc=
1
2 ln(1+`2). (19)

We will also need the entropy (per unit volume)

h(b) :=h(p b
±)

=ln(`2 cosh 2b)+
1
p

F
p
2

0
ln{1+`1 − o2

b sin2 w} dw

− 2b tanh 2b − b
sinh2 2b − 1

sinh 2b cosh 2b
52

p
F

p
2

0

dw

`1 − o2
b sin2 w

− 16 , (20)

where

ob=
2 sinh 2b

cosh2 2b
. (21)

This expression can be found using the results for free energy f(b) and
energy e(b), see, e.g., ref. 43, because of

h(b)=be(b) − bf(b). (22)
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Fig. 5. The function s(x).

Theorem 3.1. Let mb and h(b) be defined by (18) and (20). Also,
let

s(x)=−
1+x

2
ln

1+x
2

−
1 − x

2
ln

1 − x
2

, x ¥ [− 1, 1], (23)

(see Fig. 5).7 Multi-information of the Ising square lattice is given by

7 0 ln 0 :=0.

I(F b)=s(mb) − h(b). (24)

Remark 3.2. Notice that similar expressions can be found for all
translation-invariant models with binary spin space.

3.2. The Maximum of Multi-Information

Putting some effort into bounding the terms in (24), one can obtain
analytic results connecting the phase transition with maximum multi-
information:

Theorem 3.3. In the two-dimensional Ising model, multi-informa-
tion as a function b W I(F b) of inverse temperature attains its isolated
global maximum at the point of phase transition b=bc. At this point, the
left-sided derivative goes to +., the right-sided one to − ..

This subsection is devoted to the proof of the theorem. Some technical
results are needed. Using the shorthand notation

G(b) :=
sinh2 2b − 1

sinh 2b cosh 2b
52

p
F

p
2

0

dw

`1 − o2
b sin2 w

− 16 , (25)
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we have the following bounds:

Lemma 3.4. Let b \ bc. Then

bG(b) [ min 3 sinh 2b − 1
2

ln
sinh 2b+1
sinh 2b − 1

,
b

sinh 2b cosh 2b
4 . (26)

Moreover, G(bc)=0.

− ln(`2 cosh 2b)+2b tanh 2b

[ min 32bc(b − bc)+`2 bc − ln 2,
− b

sinh 2b cosh 2b
+ln `24 , (27)

s(mb) [ ln 2 −
(1 − sinh− 4 2b)

1
4

2
−

(1 − sinh− 4 2b)
1
2

12
, (28)

ds(mb)
db

[ −
sinh− 4 2b

tanh 2b
m−6

b . (29)

Lemma 3.5. For 0 [ y [ 1/2 we have

(1 − (1+y2)− 4)
1
4

2
>

y2

2
ln

2+y2

y2 . (30)

Proof of Theorem 3.3. Multi-information is considered in four
different regimes. Let us start with the high-temperature case:

(A) b [ bc. We consider the monotonicity of I(F b). Here, the
order parameter mb vanishes. Thus, as an immediate consequence of
Theorem 3.1 we obtain

I(F b)=ln 2 − h(b), b [ bc. (31)

Using (22) and d(bf(b))/db=e(b), (38) the b derivative is

dI(F b)
db

=−
dh(b)

db
=−b

de(b)
db

=−b
d2(bf(b))

db2 \ 0. (32)

This relation follows from the convexity of − bf(b), see again ref. 38.
Hence, the monotonicity up to the critical point is known.

(B) b=bc. Let us now prove the cusp at the critical temperature.
Some care especially for the right-sided derivative is necessary since we
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have antagonist terms going to infinity. For the left-sided derivative we use
the second equality in (32). The divergence of the specific heat is known
from the literature:

de(b)
db

=
8
p

ln |b − bc |+bounded terms, (33)

see ref. 40 (p. 152). Since this expression goes to − . as b q bc, the left-
sided derivative of I(F b) goes to +..

Above bc, the derivative of the first term in (24) comes into play. To
make (33) depend on mb, we use (1 − sinh− 4 2b) [ 8 `2 (b − bc), which
follows from the concavity of the LHS. Together with (18) we have

ln(b − bc) \ 8 ln mb − ln(8 `2). (34)

With this and (29) we find

lim
mb s 0

dI(F b)
db

[ lim
mb s 0

5−
sinh− 4 2b

tanh 2b
m−6

b −
8
p

8 ln mb+b.t.6

= lim
y Q .

y6 5− `2+
64 ln y

py6 +
b.t.
y6

6=−., (35)

where we used the substitution y :=1/mb and sinh− 4 2bc/tanh 2bc=`2.

(C) bc < b. For the remaining b domain we only show I(F b) <
I(F bc) for b > bc. Together with Theorem 3.1 this becomes

s(mb) − h(b) < ln 2 − h(bc), b > bc. (36)

With (19), (20), the entropy at bc is found to be

h(bc)=ln 2 − `2 bc+
1
p

F
p
2

0
ln[1+cos w] dw. (37)

(We used G(bc)=0 from Lemma 3.4 and cosh 2bc=`2.) The relation to
be shown, (36), thus becomes

s(mb) − ln(`2 cosh 2b)+
1
p

F
p
2

0
ln

1+cos w

1+`1 − o2
b sin2 w

dw

+2b tanh 2b+bG(b) − `2 bc < 0, b > bc. (38)
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The integral in (38) is smaller or equal to zero since cos w [ `... . It thus
suffices to no longer consider this term in the following. For an additional
partitioning of the domain above bc we use

b̄ :=1
2 arsinh(1 − K4)− 1

4, K :=2(`2 bc − 3
2 ln 2). (39)

(C1) bc < b [ b̄. If we feed the corresponding terms from
Lemma 3.4 into (38), we obtain the following inequality whose proof
suffices to prove (38):

−
(1 − sinh− 4 2b)

1
4

2
−

(1 − sinh− 4 2b)
1
2

12
+2bc(b − bc)

+
sinh 2b − 1

2
log

sinh 2b+1
sinh 2b − 1

< 0. (40)

We now show that the sum of the first and last terms of the LHS, as well
as the sum of the two terms in-between them are negative in the required
range bc up to b̄. For first and last term we define y by sinh 2b=: 1+y2

and use Lemma 3.5. Also using

sinh 2b̄ < 1+(1/2)2 (41)

(which can be checked using (39), sinh 2b̄ % 1.18) it is clear that the sum of
first and last terms of the LHS of (40) are smaller zero in the required
range. For the middle terms, we square the corresponding inequality to
obtain

4b2
c (b − bc)2 <

1 − sinh− 4 2b

144
, bc < b [ b̄. (42)

Here, we do the following: At b=bc both sides are equal to zero. Taking
the second derivatives shows that the LHS is a concave function, the RHS
a convex one. If the inequality holds for the point b̄, it also holds for the
entire interval (bc, b̄]. Using (39) one calculates for b=b̄

4b2
c (b̄ − bc)2 <

K4

144
, (43)

from which we obtain (taking the square root, shifting terms and applying
the hyperbolic sine)

sinh 2b̄ < sinh 5 K2

12bc
+2bc

6=1.19471... . (44)

962 Erb and Ay



Putting in the value of sinh b̄ using (39) shows that this relation indeed
holds. Hence (42) holds in the required b range including b̄, and thus (38)
holds.

(C2) b̄ < b. Lemma 3.4 again makes (38) an inequality whose
proof suffices to prove (38):

3
2

ln 2 − `2 bc −
(1 − sinh− 4 2b)

1
4

2
< 0, b̄ < b. (45)

The corresponding equality is just solved by b̄, cf. (39). As the LHS is
monotonically decreasing, the inequality holds above b̄. L

3.3. Discussion

Since I=H(p{0}) − h(p) (see (50)), two sorts of uncertainty or knowl-
edge play a role: In Fig. 6 we show the information about the single spin
that stems from the entire system, ln 2 − h(p) (information per site, or
redundancy) and the information about the single spin that comes from a
single spin only, ln 2 − H(p{0}) (cf. also, e.g., refs. 9 and 10 for a discussion
of entropies on different scales). Multi-information is the difference
between these terms and can be seen as the average information the single
spin carries about the full system and vice versa. We will show this in terms
of mutual information for the one-dimensional case.

Interestingly, if one plots correlation functions of near neighbours
and the squared magnetization, one gets a very similar picture to Fig. 6,
see Fig. 8.10 in ref. 35. The difference then would be covariance, which,
although only accounting for second-order interactions, behaves similar to
multi-information in the Ising case, cf. also ref. 29.

Fig. 6. 2d Ising: Full-system and single-spin information versus normalized temperature.
Their difference is multi-information.
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Figure 4 fits nicely into the universal picture discussed in ref. 3, Fig. 1.
Clearly, the cusp is due to the phase transition, which is also characterized
by non-analyticity of the free energy.

Let us also briefly mention the approaches to stochastic dependence in
the Ising square lattice that can, to our knowledge, be found in the litera-
ture. In ref. 34, the mutual information between two spins depending on
their distance and on temperature is considered. The relation to magneti-
zation and correlation function is shown. Plots very similar to ours are
obtained by simulation. In ref. 3, a similar plot, here of excess entropy (see
next section) is obtained by simulation. There are different choices for a
definition of excess entropy in two dimensions. In ref. 21 this problem is
tackled, and three different definitions (seen as equivalent in one dimen-
sion) are presented in the 2d case. Plots for nearest and next-nearest
neighbour Ising model are obtained using simulations.

Since multi-information coincides with excess entropy for the Ising
chain (see next section), we can consider it another definition of excess
entropy for the Ising square lattice.

Only in the last of the above cited articles is the problem of multiple
excess entropies stated. They appear because of non-uniqueness of the
Gibbs measure. Note that Definition 2.5 takes this fact into account.

4. ONE-DIMENSIONAL SYSTEMS

4.1. Multi-Information and Excess Entropy

One-dimensional systems on (SZ, F) are readily interpreted as time-
dependent. Translation invariance is seen as stationarity of a stochastic
process. In this section it is convenient to leave out the dependence on p
and to use the notation ... X−1, X0, X1, X2 ... for the infinite chain of
random variables that take values from the finite alphabet S, so, e.g.,
H(X1,...Xn)=H(p{1,..., n}) denote the entropy of n consecutive random
variables. In the following we want to discuss the relationship of multi-
information to standard quantities defined in the time context, so we make
the following

Definition 4.1. Let the conditional entropies be denoted by hn :=
H(Xn | Xn − 1,..., X1)=H(p{1,..., n}) − H(p{1,..., n − 1}) where n > 0 and h1 :=
H(X1)=: H0, the entropy rate by h :=lim n Q . H(p{1,..., n})/n. The mutual
information between Xn and X1,..., Xn − 1 is MI(Xn; X1,..., Xn − 1) :=H0 − hn.
The excess entropy (or effective measure complexity) is defined by

E := C
.

n=1
(hn − h). (46)
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It is well known that hn converges to h for n Q .. Depending on the
speed of convergence, E can be finite or infinite. It is known to measure the
total information needed for optimal predictions, (23) see ref. 17 and refer-
ences there. On the other hand hn is the average unpredictability (19) of Xn

given the values of the n − 1 preceding variables in the chain.
Using the chain rule for entropy, finite-volume multi-information can

be written as

IL(X1,..., XL)= C
L

n=1
(H(Xn) − hn)= C

L

n=1
(H0 − hn). (47)

Defining a finite-volume excess entropy EL(X1,...XL) :=;L
n=1 (hn − h), we

observe that EL and IL are two sides of the same coin, both summing up
differences of hn from a fixed quantity. These summands are called measure
complexities (19, 23) for EL and mutual informations for IL. In the spirit of
refs. 17 and 20 the similarity between EL and IL is schematically illustrated
in Fig. 7. Note however that in the limit both quantities are in general no
longer similar.

Theorem 4.2. For p a translation-invariant probability measure on
(SZ, F), we have the following expressions for I and E:

(i) I=lim n Q . MI(Xn; X1,..., Xn − 1),

(ii) E=I+;.

n=2 (hn − h), especially E=I if p is Markov.

The proof follows immediately from the definitions of the involved
quantities. Multi-information in the limit is thus the average information
that the past carries about the next variable in the chain. Excess entropy is

{
n

H0

h

E L

I

hn

1 L

IL

Fig. 7. The area below the hn curve converges to excess entropy, the area above the curve is
finite-volume multi-information.
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often discussed in the context of mutual information between the past and
the future, i.e., between two semi-infinite blocks in the chain. Also, it is well-
known that the convergence behaviour of hn informs us about important
system properties. (9, 10) However, from the size of E alone we cannot in
general tell how fast hn converges: Different values of I give different con-
vergence behaviour for the same E. Thus E and I complement each other
as regards information about the convergence of hn. Moreover, being the
first summand in (46), I is a lower bound on E. We have E=I for Markov
chains (nearest-neighbour spin chains) since hn=h for all n > 1 in this case.
This leads us to the Ising model.

4.2. Ising Model as a Markov Chain

The usual description of Markov chains by one-sided conditional
probabilities is closely related to a description by means of the Gibbsian
probability kernels. Indeed, S assumed finite, we have a one-to-one corre-
spondence between the set of all positive transition matrices of a Markov
chain and the shift-invariant potentials for which FV=0 if V ] {i} or
{i, i+1} (homogeneous nearest-neighbour). (22, 25) The set of Gibbs mea-
sures of such potentials only contains the unique measure defining the
Markov chain whose transition matrix can be calculated explicitly from F.

There is a complete solution for the nearest-neighbour Ising chain in
a magnetic field b. Our interaction potential depends on this additional
parameter now:

F b, b
V (x)= − bx ix i+1 if V={i, i+1},

F b, b
V (x)= − bbx i if V={i},

(48)

and F b, b
V (x)=0 for all other V … Z. In analogy to (24) we can write down

a formula for multi-information (for entropy and magnetization see, e.g.,
ref. 36) and plot it depending on b and b (Fig. 8). Alternatively, one can
get an expression for I from the transition matrix of the corresponding
Markov chain. (30) This matrix is (22)

Pb, b=Re− 2bbq−1
b, b 1 − e− 2bbq−1

b, b

1 − q−1
b, b q−1

b, b

S (49)

where qb, b :=e− bb(cosh bb+`e− 4b+sinh2 bb). For b=0 the two ground
state configurations are described by the unique Gibbs measure that gives
equal weight to the respective Dirac measures (cf. also the dotted line in
Fig. 2). We have symmetry in this case, the probability that the direction of
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Fig. 8. Multi-information (=excess entropy) in the Ising chain.

the spin stays the same after the next time step is 1/(1+e− 2b). H0 keeps its
maximal value ln 2 through all temperatures, so multi-information is com-
pletely determined by the entropy rate. It means that we can predict that
the spin will not flip with higher and higher certainty when lowering tem-
perature, but that there are equal chances for both possibilities regarding
the actual value of X1. For b > 0 the symmetry is broken. We have a pref-
erence for the value of X1 in the direction of the field, H0 is reduced. There
is competition between the order creating and destroying influences of field
and temperature. The past carries most information about X1 if these
influences balance out. Although no phase transition takes place, this
maximization of I can be seen as a related phenomenon.

It is interesting to investigate the nature of this non-critical ‘‘transi-
tion.’’ See ref. 16 for a similar picture as Fig. 8 (for b held fixed). There,
excess entropy (which, as mentioned, equals multi-information in this case)
was calculated using transfer matrices.

5. PROOFS OF LEMMAS AND THEOREMS

Let us first state a lemma which will be needed for the proof of
Theorem 2.2:

Lemma 5.1. Let p, q be probability measures on (W, F). We have

(i) 0 [ H(p{0}) [ ln |S|,

(ii) H((tp+(1 − t) q){0}) \ tH(p{0})+(1 − t) H(q{0}) -t ¥ [0, 1],

(iii) H(p{0}) is continuous for the weak* topology.

Proof. For (i) and (ii) see ref. 14. In our case the measures are
marginals of p, q, but (ii) follows immediately from the affinity of the
projection of p onto p{0}, i.e., (tp+(1 − t) q){0}=tp{0}+(1 − t) q{0}.

(iii) follows from the continuity of entropy w.r.t. p{0}, see ref. 12.
It remains to show that the projection p0 of p onto p{0} is continuous,
i.e., that from pn Q p follows p0(pn) Q p0(p). Continuity for the weak*

Multi-Information in the Thermodynamic Limit 967



topology on our topological space W means that pn Q p is equivalent to
pn(f) Q p(f) -f ¥ C(W) (being the space of continuous functions for the
product topology). For f we choose the indicator function 1{X0=x0} (which
is continuous since the inverse images of 1 and 0 are open sets). Now we
have

p0(pn)(x0)=pn(1{X0=x0}) Q p(1{X0=x0})=p0(p)(x0) -x0 ¥ S. L

Proof of Theorem 2.2. We use the existence of the van Hove limit,
upper-semicontinuity and affinity of the entropy limL q Zd

1
|L| H(pL)=: h(p)

¥ [0, ln |S|] (cf. refs. 27 and 38, these properties follow immediately from
the proof for a more generally defined entropy not requiring finite S) and
Lemma 5.1. Similarly to I(pL), we can split I(p)=

lim
L q Zd

1
|L|

5 C
i ¥ L

H(p{i}) − H(pL)6=H(p{0}) − h(p), (50)

where the second equality follows from translation invariance. Since we have
all the required properties for h(p) and H(p{0}), the theorem follows. L

Proof of Theorem 2.7. We have to show that the Infimum is always
attained in an extreme point of GI. This follows from compactness and
convexity of GI as well as lower-semicontinuity and concavity of I(p)
according to Theorem 25.9 in Vol. 2 of ref. 13. L

Proof of Theorem 3.1. We show:

(i) I(F b)=I(p b
±),

(ii) I(p b
±)=s(mb) − h(b).

(i) According to (16), the p b
± are the only extreme Gibbs measures.

First we show that I(p) is symmetric around (p b
− +p b

+)/2. For this we use
the measures p=(1 − t) p b

− +tp b
+ and pŒ=tp b

− +(1 − t) p b
+ for t ¥ [0, 1].

Because of the spin-flip symmetry (17), for L …… Zd we have H(pL)=
H(p −

L). Taking the limit yields h(p)=h(pŒ), with (50) we also have
I(p)=I(pŒ). By Theorem 2.7 I(F b)=infp ¥ {pb

−, pb
+} I(p), because of the

above symmetry we have I(p b
− )=I(p b

+) (see Fig. 3).

(ii) We have p(X0)=;x0=±1 p(X0=x0) x0=p(X0=1)−p(X0=−1).
Also using ;x0=± 1 p(x0)=1, we obtain for the single-spin probability

p(X0=x0)=
1+x0 p(X0)

2
. (51)
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Hence

H0(p b
±)=− C

x0=± 1

1+x0 p b
±(X0)

2
ln

1+x0 p b
±(X0)

2
=s(p b

+(X0)). (52)

Since s is even, both expectations give the same result. From (50) follows
(ii). L

Proof of Lemma 3.4.

Equation (26).

(1) bG(b) [
sinh 2b − 1

2 log sinh 2b+1
sinh 2b − 1 , G(bc)=0

Taking the −1 out of the square brackets in (25) and into the integral,
the resulting numerator in the integral can be modified like this:

1 − `1 − o2
b sin2 w [ 1 − (1 − o2

b sin2 w) [ o2
b sin w. (53)

Estimating the resulting integral (11) yields

F
p
2

0

sin w

`1 − o2 sin2 w
dw=

1
2o

ln
1+o

1 − o
, |o| < 1. (54)

We use (21) and

1+ob

1 − ob

=1 sinh 2b+1
sinh 2b − 1

22

(55)

to find

G(b) [
sinh2 2b − 1

cosh3 2b

4
p

ln
sinh 2b+1
sinh 2b − 1

. (56)

We still have to show that

b
sinh2 2b − 1

cosh3 2b

4
p

[
sinh 2b − 1

2
, (57)

or

sinh 2b+1
cosh3 2b

[
p

8b
. (58)
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Note that for b > bc we have sinh 2b > 1, so the LHS can be bounded like

sinh 2b+1
cosh3 2b

[
sinh2 2b+1

cosh3 2b
=

cosh2 2b

cosh3 2b
[

1
1+(2b)2/2

, (59)

which follows from the series expansion of the hyperbolic cosine. Return-
ing to (58), we have to show

1
1+(2b)2/2

[
p

8b
(60)

or

0 [ b2 −
4
p

b+
1
2

, (61)

which is fulfilled for b=0. Since the corresponding equation has no real
zeroes, the relation also holds for all the other b, and thus (57) is proven.

We still have to show that G(bc)=0. Clearly, G(b) \ 0 for b \ bc.
In part (C1) of the proof of Theorem 3.3 we have moreover shown that
bG(b) [ (1 − sinh− 4 2b)

1
4/2, given the just proven first statement of the

lemma. Hence we have

0 [ G(bc) [
(1 − sinh− 4 2bc)

1
4

2bc
=0. (62)

(2) G(b) [ 1/sinh 2b cosh 2b

For b \ bc we have

`1 − o2
b=

sinh2 2b − 1
cosh2 2b

. (63)

Using this, (25) becomes

G(b)=coth 2b `1 − o2
b
52

p
F

p
2

0

dw

`1 − o2
bsin2w

− 16 . (64)

We take the root into the square brackets and obtain the integrand

= 1 − o2

1 − o2 sin2 w
− `1 − o2. (65)
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This is a continuous function in w which has the value zero at w=0 and
the value 1 − `1 − o2 at w=p/2. Connecting these two points, one obtains
the diagonal of a rectangle with area (1 − `1 − o2) p

2 . The integral can be
bounded by half of the area of this rectangle. We show that the part of the
area A of the rectangle above the integrand is greater or equal to the part B
of the area below the integrand (the integral itself ). Instead of comparing A
and B, we compare their respective integrands. We obtain the integrand of
A by twice reflecting the integrand of B: once in the vertical line through
p/4, once in the horizontal line through 1 − `1 − o2

2 . The resulting inequality is

= 1 − o2

1 − o2 sin2 w
− `1 − o2 [ 1 −= 1 − o2

1 − o2 cos2 w
, (66)

or put differently,

3= 1 − o2

1 − o2 sin2 w
+= 1 − o2

1 − o2 cos2 w
4 [ 1+`1 − o2 . (67)

The expression in curly brackets is symmetric around p/4 because of
cos2 w=sin2(p/2 − w). In order to prove the inequality, we just have to
show that the expression is monotonic decreasing up to p/4 (for w=0 we
have equality), which is easily seen by looking at its derivative. Thus B [ A
and

F
p
2

0

5= 1 − o2

1 − o2 sin2 w
− `1 − o26 dw [

1
2

(1 − `1 − o2)
p

2
. (68)

Continuing with (64) we find

G(b) [ coth 2b
2
p

1
2

(1 − `1 − o2
b)

p

2
. (69)

Again using (63), we obtain the desired bound.

Equation (27).

(1) − ln(`2 cosh 2b)+2b tanh 2b [ 2bc(b − bc)+`(2) bc − ln 2

Expanding the LHS into a Taylor series around bc, we observe that
the second derivative is smaller zero for 4b tanh 2b > 1 (which holds for
b > bc), so for an upper bound the series can be truncated after the first
term.
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(2) − ln(`2 cosh 2b)+2b tanh 2b [ − b

sinh 2b cosh 2b
+ln `2

Factoring out e2b from the definition of cosh 2b, the LHS can be
equated to b(2 tanh 2b − 2)+ln `2

1+e − 4b . Moreover,

2 tanh 2b − 2+
1

sinh 2b cosh 2b
=

e− 4b

sinh 2b cosh 2b
. (70)

It follows that

− ln(`2 cosh 2b)+2b tanh 2b −
b

sinh 2b cosh 2b

[ b
e− 4b

sinh 2b cosh 2b
− ln[1+e− 4b]+ln `2 [ ln `2. (71)

The last relation was obtained using the fact that the sum of the first two
terms does not exceed zero. To show this, we modify the first term as
follows:

b
e− 4b

sinh 2b cosh 2b
=

2be− 4b

sinh 4b
[

2be− 4b

4b
=

e− 4b

2
. (72)

Now we have the inequality

e− 4b

2
[ ln[1+e− 4b]=

e− 4b

2
+

e− 4b

2
−

e− 8b

2
+ C

.

n=2

5 1
e4b(2n − 1)(2n − 1)

−
1

e4b(2n)2n
6 ,

(73)

since on the RHS the terms after the first exp(−4b)/2 are pairwise greater
0 (we expanded ln(1+x), cf. ref. 11). Thus (71) holds.

Equation (28). The function s(x) can be rewritten as follows:

s(x)=−
1+x

2
ln

1+x
2

−
1 − x

2
ln

1 − x
2

=ln 2 −
1
2

[(1+x) ln(1+x)+(1 − x) ln(1 − x)]. (74)
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The expression in square brackets is expanded (see again ref. 11) and
bounded below:

[]=(1+x) C
.

n=1
(−1)n+1 xn

n
− (1 − x) C

.

n=1

xn

n

= C
.

n=1

5(−1)n+1 xn

n
−

xn

n
6+x C

.

n=1

5(−1)n+1 xn

n
+

xn

n
6

=− C
.

n=1

x2n

n
+2 C

.

n=1

x2n

2n − 1
= C

.

n=1

x2n

2n2 − n
\ x2+

x4

6
. (75)

This bound is possible since all the coefficients in the sum are positive.
Together with (18) for mb we thus obtain

s(mb) [ ln 2 −
(1 − sinh− 4 2b)

1
4

2
−

(1 − sinh− 4 2b)
1
2

12
. (76)

Equation (29). We have

ds(mb)
db

=
sinh− 4 2b

tanh 2b
m−7

b

1
2

ln
1 − mb

1+mb

. (77)

Expanding the logarithm into a series (see, e.g., ref. 11), we obtain the
following bound:

m−1
b

1
2

ln
1 − mb

1+mb

=−1 − C
.

n=1

m2n
b

2n+1
[ − 1. (78)

From this the lemma follows. L

Proof of Lemma 3.5. In order to show that

(1 − (1+y2)− 4)
1
4

2
>

y2

2
ln

2+y2

y2 , 0 [ y [
1
2

(79)

we show that the LHS is greater than 3
5 y, the RHS is smaller than 3

5 y. So
for the RHS we have to show

5
6

y ln
2+y2

y2 < 1. (80)
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We only need y [ 1/2. In this case 2+y2 [ 9/4, and thus we also have

5
6

y ln
2+y2

y2 [
5
6

y ln
9

4y2=−
5
3

y ln
2
3

y. (81)

By equating the first derivative to zero we obtain the maximum of the
function − y ln(2y/3) at 3/(2e). Hence

−
5
3

y ln
2
3

y [
5
3

3
2e

< 1. (82)

With this, (80) is shown for y [ 1/2. For the LHS of (79) one has to prove:

(1 − (1+y2)− 4)
1
4

y
>

6
5

. (83)

The LHS is modified as follows:

= 4=(1+y2)4 − 1
y4(1+y2)4 =

1
(1+y2)

4=y8+4y6+6y4+4y2

y4 \
4
`4y− 2

1+y2
. (84)

Since in the last expression the denominator is monotonically decreasing,
the numerator increasing, for a lower bound it suffices to evaluate the
expression for the greatest y:

4
`4y− 2

1+y2
\

4
`4( 1

2)− 2

1+1
4

=
8
5

>
6
5

, y [
1
2

. L (85)
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